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In this paper, we employ a self-consistent harmonic approximation to investigate surface melting and local
melting close to quantum impurities in quantum solids. We show that surface melting can occur at temperatures
much lower than the critical temperature Tc of the solid phase instability in the bulk. Similar effects are driven
by the presence of an isotope substitution. In this latter case, we show that stronger local lattice fluctuations,
induced by a lighter isotope atom, can induce local melting of the host bulk phase. Experimental consequences
and the possible relevance in solid helium are discussed.
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I. INTRODUCTION

Although melting is a very common phenomenon in na-
ture, the debate about its microscopic mechanism is still
open.1–3 The first empirical theory was advanced by
Lindemann.4 According to this view, melting occurs when
the ratio between the root mean square �rms� urms=��u2� of
the thermally activated lattice fluctuations and the lattice
constant a exceeds a phenomenological threshold urms /a
�0.16 which is roughly material independent.5,6 In spite of
its several flaws �melting is described in terms of the prop-
erties of only the solid phase; no cooperative process and no
role of defects are considered�, this simple criterion seems to
work reasonably well for a variety of materials.7 The Linde-
mann criterion has been recently found to apply as well at a
local level around crystal defects.8,9 This large range of va-
lidity of the Lindemann criterion suggests thus that a micro-
scopic mechanism is actually operative.

The most simple �and employed� model to account for the
Lindemann phenomenology is the self-consistent harmonic
approximation �SCHA�. This maps an anharmonic phonon
model in a harmonic one. Anharmonicity is, then, taken into
account, at a mean-field level, through a Debye-Waller-like
term which is evaluated self-consistently. The breakdown of
this approach is interpreted as a signal of solid phase insta-
bility and hence related to melting. One of the strength of
this theory is that it predicts, in contrast with the Born crite-
rion but in agreement with the experimental observation, a
partial but not total softening of the elastic constants of the
bulk.

The SCHA represents, moreover, an efficient tool to un-
derstand in a qualitative way the phenomenon of the surface
melting �SM�, as first proposed by Pietronero and Tosatti
�PT�.10 In this context, the physical mechanism underlying
the surface melting is quite simple: atoms close to the sur-
face have larger lattice fluctuations due to the reduced num-
ber of nearest neighbor sites, and the SCHA breaks down
consequently at smaller temperatures than in the bulk. It is
clear that this simple theory does not represent an exhaustive
description of the surface melting phenomenology, which
should include roughening, preroughening, partial wetting,

the role of “crystallinity,” etc.11,12 In addition, it should be
stressed that the SCHA does not determine directly the melt-
ing point but rather the instability of the solid phase which is
prevented by the melting process itself.13 In this perspective,
this criterion should not be employed at a quantitative level.
Nevertheless, since the solid phase instability and the actual
melting process are usually related to each other, the PT
theory provides a simple and useful way to get information
about the tendency of a system toward melting and surface
melting and their dependence on microscopic parameters.

In this paper, we generalize the results of the PT approach
in the case of quantum solids. The Lindemann criterion in
the quantum solid is shown to be twice as large as the one in
the classical limit, in agreement with experimental reports.14

We show a phase diagram for both the bulk and surface
melting cases, and we investigate also the local melting due
to an isotopic substitution. The temperature dependence of
the lattice fluctuations for the different classical and/or quan-
tum regimes is evaluated and also the profile of the lattice
fluctuations as a function of the distance from the surface or
the isotopic impurities. The paper is organized as follows. In
Sec. II, we review the approach of Pietronero and Tosatti for
classical solids. In Sec. III, we generalize the PT approach to
investigate bulk properties in quantum solids, surface melt-
ing and solid phase instability close to a quantum isotope
impurity are analyzed, respectively, in Secs. IV and V. Fi-
nally, in Sec. VI, we discuss our results and draw some final
conclusions.

II. SELF-CONSISTENT HARMONIC APPROXIMATION
AND SOLID PHASE INSTABILITY IN BULK AND

ON SURFACES

Let us consider for simplicity a one-dimensional chain of
atoms. At the harmonic level, we can write the equations of
motion for the lattice displacement un,

Mün +
kn,n+1

2
�un − un+1� +

kn,n−1

2
�un − un−1� = 0, �1�

where M is the atomic mass and n denotes the site index. The
constant forces kn,n�, at the harmonic level, are related to the
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interatom potential Vn,n� through the relation kn,n�
= ��2Vn,n� /�un

2��un�=0. Writing the potential Vn,n� in terms of a
Fourier expansion, Vn,n�=	qVq exp
iq�un−un���, we have
thus, at the harmonic level, kn,n�=k0=−	qq2Vq.

In the spirit of SCHA, anharmonic terms can be taken into
account, by replacing the constant forces kn,n�, evaluated at

the lattice equilibrium, with their expectation value k̃n,n� av-
eraged over the lattice fluctuations. We have thus explicitly

k̃n,n� =� �2Vn,n�

�un
2 
 = − 	

q

q2Vq exp
− q2��un − un��
2�/2�

� k0 exp
− ��un
2�/2 − ��un�

2 �/2� , �2�

where in the last line, we have neglected the cross terms and
we have replaced the dependence on the momenta in the
exponential with an effective parameter �.

By inserting Eq. �2� in Eq. �1� and considering the motion
of each atom as an Einstein oscillator, we have

Mün +
1

2

k̃n,n+1 + k̃n,n−1�un = 0, �3�

where anharmonic effects are taken into account in the self-

consistent renormalization of the elastic constants k̃n,n�. Note

that k̃n,n� depends on the expectation value of the quadratic
lattice fluctuations on both sites n, n�. It follows that the
atomic motion described in Eq. �3� is ruled by the lattice
fluctuations of the lattice environment. In a bulk system,
�un

2�= �un�
2 �= �u2�, then

k̃n,n� = k̃ = k0 exp
− ��u2�� , �4�

and we get a unique self-consistent equation,

�u2� =
kBT

k̃
=

kBT

k0
exp
��u2�� , �5�

where kB is the Boltzmann constant. In similar way,

the SCHA phonon frequency is given by �̃0=�k̃ /M
=�0 exp
−��u2� /2�, where �0=�k0 /M is the bare phonon
frequency at the purely harmonic level. It is convenient to
rewrite Eq. �5� by introducing the dimensionless quantities
y=��u2�, �cl=�kBT /k0,

y��cl� = �cle
y��cl�. �6�

Equation �6� has no solution for �cl��cl
max=1 /e=0.368,

which determines a critical temperature kBTc=0.368k0 /�. At
this value, y��cl

max�=1 and the maximum magnitude of the
allowed lattice fluctuations above which the solid phase is
unstable is �u2�max=1 /�. Note that �u2�max depends neither
on the atomic mass nor on the force constant k0, in agree-
ment with the observation of similar Lindemann ratios in
materials with extremely different phonon frequencies and
atomic masses.

Equation �3� represents also the starting point to apply the
SCHA to surface melting. In this case, one defines a local
average lattice fluctuation �un

2� which depends on the site
index n. In the same spirit, one can define a local elastic
constant,

k̃n,n−1,n+1 = 
k̃n,n+1 + k̃n,n−1�

= k0e−��un
2�/2
e−��un−1

2 �/2 + e−��un+1
2 �/2� . �7�

We can write thus a set of recursive equations where the
lattice fluctuations of the atom n depend on the lattice fluc-
tuations of the n−1 and n+1 atoms. The recursion is trun-
cated at the atom n=1 which represents the outer atom close
to the free surface. This atom probes an effective harmonic
potential smaller than the bulk, which increases its tendency
toward melting. A numerical solution shows that the solid
phase for the surface atoms becomes unstable at
�cl

SM=0.271, 26% smaller than the bulk value. The same
theory permits the evaluation of the profile of the lattice
fluctuations as a function of the distance from the surface.
These theoretical predictions agree quite well with the profile
of the lattice fluctuations close to defects �grain boundaries,
dislocations, and vacancies� in colloidal solids.9 Note that,
although the temperature of surface melting is smaller than
that in the bulk, local lattice fluctuations of the outer atoms
can be larger than the ones in the bulk, violating locally the
Lindemann criterion. This is also in agreement with Ref. 9.
For instance, for the outer atoms n=1, one finds y1

SM=1.74.
This is 74% larger than the value in the bulk.

III. BULK PROPERTIES OF QUANTUM SOLIDS

The melting process of quantum solids has been discussed
in many papers, mainly by using approaches based on the
density functional theory.15–19 However, they are, in general,
quite hard to be employed to investigate premelting effects
close to local defects. To this aim, we generalize now the
above presented PT theory, which presents the advantages to
be easily generalized in a local framework, to the case of
quantum solids. In the following, we shall assume a one-
particle picture to be still valid because of the smallness of
the exchange terms in the solid phase �Jmax�0.1 K in 4He,
Jmax��K in 3He� with respect to the melting temperatures
Tm�2 K.20,21 On the other hand, a major role in our ap-
proach will be played by the quantum fluctuations which
dominate at low temperature in the quantum regime. Accord-
ing to this perspective, the atomic motion of the atom n is
described in terms of the SCHA Hamiltonian of the quantum
oscillator,

�−
�2�u

2

2M
+

1

4
k̃n,n−1,n+1un

2�	�un� = E	�un� , �8�

where the self-consistent expression for the local potential

k̃n,n−1,n+1 is reported in Eq. �7�.
We consider first the melting properties of bulk systems

�k̃n,n−1,n+1=2k̃�. In this SCHA quantum model, the total
amount of lattice fluctuations is now easily computed as
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�u2� =
�

2M�̃0
�1 + 2n���̃0

kBT
�� , �9�

where n�x�=1 / 
ex−1� is the Bose factor and where we re-

mind �̃0=�k̃ /M and k̃ is given by Eq. �4�. In the classic
limit, kBT
��̃0, n�x��1 /x
1, and we recover the classical
result of Eq. �5�. On the other hand, in the zero temperature
limit, lattice fluctuations are due only to zero point quantum
motion. In this case, n�x�=0 and Eq. �9� reads

�u2� =
�

2�Mk̃
=

�

2�Mk0

exp
��u2�/2� , �10�

which, introducing the variable �Q=�� /2�k0M, can be writ-
ten in the dimensionless form

y��Q� = �Qey��Q�/2. �11�

Equation �11� represents the quantum generalization of
Eq. �6� where the instability of the solid phase is now trig-
gered by the magnitude of the quantum lattice fluctuations.
This occurs for �Q��Q

max=2 /e=0.736. It is interesting to
note that the breakdown of the solid phase driven by quan-
tum fluctuations is not merely equivalent to the one related to
the thermal motion. Indeed, for a quantum solid, we would
predict a maximum magnitude of lattice fluctuations
y��Q

max�=2, two times larger than for classical solids. This
behavior is indeed in agreement with the report of the Lin-
demann ratio urms /a�0.28 in helium solids14,22,23 to com-
pare with urms /a�0.16 for classical solids.

We also consider now the general case where both ther-
mal and quantum fluctuations are important. From Eq. �9�,
after few straightforward passages, we get

y��Q,�cl� = �Qey��Q,�cl�/2�1 + 2n�2�Q

�cl
e−y��Q,�cl�/2�� . �12�

Equation �12� generalizes the stability criterion based on
the SCHA in the full quantum-thermal case. As a general
rule, we can expect that the classical regime is relevant in the
empirical range kBT /��0�1 /4, which corresponds to
�Q�2�cl, while in the opposite regime, �Q�2�cl quantum
effects are dominant.

In Fig. 1, we show the phase diagram in the full �Q-�cl
space where the instability of the SCHA occurs. Along the
boundary line, the critical lattice fluctuations increase
smoothly from y=1 in the �Q=0 case to y=2 in the �cl=0
case. Also interesting is the dependence of the lattice fluc-
tuations as a function of �cl, namely, the temperature �Fig. 1,
bottom panel�. In the classical case, �Q=0, the quadratic fluc-
tuations y
 �u2� increase linearly with �cl until anharmonic
effects take place. Anharmonicity is reflected in a upturn of
the temperature dependence of y��cl� and eventually in the
breakdown of the solid phase for �cl=1 /e and y=1. Increas-
ing �Q leads not only to the presence of zero point motion
quantum fluctuations at �cl=0 but also to an overall change
of the temperature dependence of y. In particular, the range
of the linear temperature dependence, characteristic of clas-
sical harmonic solids, is rapidly reduced and for strongly
quantum solids, it disappears. Lattice fluctuations are large

already at T=0, and they are almost constants in a wide
temperature range �note that in this regime, anharmonic ef-
fects are in any case present due to quantum fluctuations�
until an abrupt upturn with the temperature leads to the
breakdown of the solid phase. This trend is in good qualita-
tive agreement with recent experimental measurements24 and
quantum Monte Carlo calculations.25 We shall discuss them
in detail in Sec. VI.

IV. SURFACE MELTING OF QUANTUM SOLIDS

After having investigated the bulk properties of quantum
solids, we now analyze the role of quantum fluctuations on
the surface melting. We can write a recursive set of equations
by considering the quantum and/or thermal SCHA solution
of the nth atom,

�un
2� =

�

2M�̃n
�1 + 2n���̃n

kBT
�� , �13�

where �̃n=�k̃n,n−1,n+1 /2M and where the local elastic con-

stant k̃n,n−1,n+1 is still given by Eq. �7�. Employing the usual
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FIG. 1. �Top panel� Phase boundary of the SCHA in the �Q-�cl

space; �bottom panel� lattice fluctuations y=��u2� as a function of
the classical parameter �cl for �from the bottom to the top�
�Qe=0.2,0.4,0.6, . . . ,1.6,1.8,1.9 �we remind that �Q

max=2 /e�.
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dimensionless variables �Q, �cl, yn, we can thus write

yn =
�2�Qeyn/4

�e−yn−1/2 + e−yn+1/2�1 + 2n�2�Q

�cl

�e−yn−1/2 + e−yn+1/2

�2eyn/4 �� ,

�14�

which is valid for any n�2, while the outer atom n=1 obeys
the relation

y1 = �2�Qe�y1+y2�/4�1 + 2n� 2�Q

�2�cl

e−�y1+y2�/4�� . �15�

In order to obtain a numerical solution of Eqs. �14� and
�15� for given �Q, �cl in the stable solid phase, we start by
choosing a trial value of y1. The full set of �yn� is thus ob-
tained by Eqs. �14� and �15�. The initial trial value of y1 is
thus varied until yn=� converges to its bulk value. Typically,
this is the only physical solution, since yn=� diverges for
larger values of y1 while it becomes rapidly negative for
smaller values of y1. For �Q, �cl larger than some critical
value, the procedure does not converge for any value of y1,
signalizing that the solid phase of the surface atom, de-
scribed by the SCHA, is unstable.

The resulting phase diagram, in the full �Q-�cl space, is
shown in Fig. 2 �top panel�, where we compare the boundary
of the surface melting instability �dashed line� with the one
of the bulk melting �solid line�. For the pure quantum case,
�cl=0, at zero temperature, the surface instability occurs for
�Q

SM=0.664 where the lattice fluctuations of the outer atoms
become as large as y1,Q

SM =3.21. It is interesting to note that,
for 0.664��Q�0.736, the surface is unstable even at zero
temperature whereas the bulk solid phase is always stable up
to a finite temperature range. The ratio Tc

SM /Tc between the
surface melting temperature and the temperature of bulk
melting is shown in the bottom panel of Fig. 2 showing that
the critical temperature of surface melting can be signifi-
cantly lower than the bulk one in quantum solids.

Before concluding this section, we would like to briefly
compare the melting occurring at a free surface with other
cases such as grain boundaries. In the case of a free surface,
in going from Eq. �14� to Eq. �15�, we have dropped in Eq.
�15� the contribution of the n=0 atom. We note that the same
results would be obtained in Eq. �14� considering n=1 and
assuming the lattice fluctuations at the site n=0 to be infinite,
namely, yn=0=�. This latter condition would be obtained by
the harmonic oscillator solution of Eq. �13� at the site n=0

with a vanishing elastic constant k̃n,n−1,n+1, and it express
nothing more than the condition that atoms for n�1 are not
in a solid arrangement but in a gaseous phase.

An intermediate situation is encountered when melting at
grain-boundary interfaces is considered. In this case, the
outer atom n=1 of a grain would not probe a free surface at
the site n=0, but it will interact with a lattice environment
with a different arrangement. These two situations can be
described by a similar set of recursion relations 
Eq. �14��
but with different boundary conditions: in the free surface
case, boundary conditions at site n=0 will be described by a

completely soft oscillator k̃n,n−1,n+1=0, signalizing that bulk
solid is interfaced with a free gaseous phase; on the other

hand, in the case of grain boundaries, the outer atom n=1
will still probe a crystal structure for n�0, although with a
different arrangement. The boundary conditions at site n=0
will still be described thus by Eq. �13�, but with a not com-
pletely soft mode. We expect thus that melting processes
occur as well at grain boundaries as in the case of free sur-
face. From the mathematical point of view, this situation is
identical to the case of quantum isotopic substitutions, and it
will be discussed in detail in the next section.

V. QUANTUM MELTING DRIVEN BY ISOTOPIC
IMPURITIES

In this section, we address the problem of the solid phase
stability close to a single local isotopic substitution embed-
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FIG. 2. �Top panel� Phase boundary for the surface melting
instability �dashed line� compared with the bulk instability �solid
line� in the �Q-�cl space; �bottom panel� ratio between surface melt-
ing temperature Tc

SM and bulk melting temperature Tc as a function
of �Q. For �Qe, even the bulk phase is unstable. For
1.12��Qe�2, the system is in a quantum regime where
kBTc

SM /��̃0�1 /4.
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ded in a perfect lattice structure. In the SCHA approach,
local stability of the solid phase is given by the solution of
Eq. �13�. It is easy to check that, in the classical limit kBT

��̃n, the dependence on the atomic mass M in Eq. �13�
drops out, so that different isotope solids should probe the
same stability conditions. On the other hand, the mere obser-
vation of a different melting line for 4He and 3He is a direct
evidence that helium is in a quantum regime.26,27 Different
isotopes are thus expected to affect the bulk solid phase sta-
bility. We expect the same at the local level.

In the following, we shall consider the case of an isolate
substitution with a lighter isotope in a host matrix of heavier
atoms. Quantum fluctuations in the two cases will be ruled
locally by the parameters �L=�� /2�k0ML and �H
=�� /2�k0MH, respectively, for the lighter �L� and for the
heavier �H� atoms. To study the stability of the solid phase
close to this isotopic quantum impurity, we can still employ
the recursive relations 
Eq. �14��, namely, for n�−1, n�1,
we set �Q=�H, whereas for n=0 �quantum isotope impurity�,
we have �Q=�L. We shall consider the representative case of
a 3He impurity embedded in 4He solid. In this case, �L /�H
=�4 /3. Same changes are, in principle, needed in this model
in the case of local isotope impurities. While a one-
dimensional geometry could be, indeed, appropriate to inves-
tigate melting effects close to flat surfaces, where only the
linear distance from the surface matters, a true three-
dimensional treatment is expected to be required when an
isolate isotope impurity is embedded in a bulk matrix. For
the sake of simplicity, however, we still employ the effective
one-dimensional model described by Eq. �14�. In this case,
the atom index n should be meant as a Manhattan distance
from the impurity. A careful treatment of dimensionality
would of course affect the profile of the lattice fluctuations
along different Manhattan lines and also affect the precise
determination of the critical values for the solid phase insta-
bility. We notice, however, that the solid phase instability is
mainly ruled by the first atomic layer in direct contact with
the surface or with the isotope impurity and that the profile
of the lattice fluctuations decays to their bulk value quite
rapidly within a few lattice constants.10 Along this perspec-
tive, we expect that a full inclusion of the dimensional ef-
fects would not change qualitatively our results.

In Fig. 3 �top panel�, we show the phase diagram of the
lattice instability of the host 4He solid close to the quantum
isotopic 3He impurity. It is instructive to compare the classi-
cal limit �Q=0 with the pure quantum one �cl=0. In the first
case, lattice fluctuations of the guest atom, as well as of the
host atoms, are independent of the relative atomic mass and
they depend only on the temperature. As a consequence, the
solid phase close to the guest atom is completely unaffected
by the isotopic substitution. A quite different situation occurs
in the highly quantum regime �cl=0. In this case, local quan-
tum lattice fluctuations of the lighter guest atom can be sig-
nificantly enhanced due to its reduced atomic mass, and they
can be sufficiently large to induce a local melting of the host
solid phase. At �cl=0, this occurs for �H�0.681, not much
higher than in the case of a free surface truncation ��Q

�0.664�. Note that Fig. 3 defines a region �quantum impu-
rity melting� where the solid phase is still stable in the bulk
but local quantum lattice fluctuations break down the solid

phase close to the isotopic substitution. On physical grounds,
we can expect liquid bubbles of host atoms to appear close to
the guest isotope. Unfortunately, since the present analysis is
only related to the stability condition of the solid phase, we
are not able to estimate the size of the liquid bubble, and
more sophisticated approaches are needed. It is interesting to
note that, for quantum solids, the critical temperature Tc

Qimp

for the local stability of the solid phase close to the quantum
isotope impurity is reduced with respect to the bulk Tc. This
is shown in the bottom panel of Fig. 3 where the ratio be-
tween the local Tc close to the impurity and the bulk Tc is
plotted as a function of the quantum degree of the system,
parametrized by �H. In the quantum regime, where Tc

Qimp
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FIG. 3. �Top panel� Phase boundary for the lattice instability
around a quantum isotopic substitution with �L /�H=�4 /3 �dashed
line� compared with the bulk instability �solid line�; �bottom panel�
ratio between melting lattice temperature Tc

Qimp around the quantum
impurity and bulk melting temperature Tc as a function of host
quantum parameter �H. In the quantum regime, 1.39��He�2,
where kBTc

Qimp /��̃0�1 /4, the local melting temperature around the
quantum impurity is sensibly lower than that in the bulk, and for
1.85��He�2, solid phase around isotopic quantum impurities is
unstable even at T=0.
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���̃0 /4, the local melting temperature Tc
Qimp can be signifi-

cantly lower than the one in the bulk Tc, and, for 1.39
��He�2, we expect a quantum isotopic impurity to induce
local melting down to T=0, although the bulk phase is still
stable.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the stability of quan-
tum solids with respect to surface melting and to isotopic
quantum substitutions. Both these phenomena can be essen-
tially related to the amount of lattice fluctuations, and they
can be driven thus by thermal fluctuations as well as by the
zero point quantum motion. We have shown that the effects
of isotopic impurities and surface melting are strongly en-
hanced in quantum solids. In particular, we show that when
quantum fluctuations are dominant in quantum solids, the
solid phase can be rapidly destroyed on the surface and close
to quantum impurities at temperatures much smaller than for
the bulk melting.

Helium solids are the natural candidates where the quan-
tum instabilities of surface or interface can occur. The actual
relevance of these quantum melting effects is of course ruled
by the magnitude of the quantum lattice fluctuations which
are parametrized in our model by the quantity �Q. An accu-
rate calculation of the quantum lattice fluctuations as a func-
tion of the temperature in 4He and 3He solids has been pro-
vided recently, by using of quantum Monte Carlo �QMC�
techniques, by Draeger and Ceperley in Ref. 25, in excellent
agreement with the experimental data.24 Quite interestingly,
they find that the mean square lattice displacement �u2�T

does not follow at low temperature an harmonic behavior
�u2�T��u2�T=0+�T2, but rather a more shallow one, �u2�T

��u2�T=0+�T3.
Reference 25 represents a suitable source to estimate an

effective value of �Q, representative of solid helium. To this
aim, we fit the temperature dependence of the QMC data of
Ref. 25 with our quantum SCHA model described by Eq.
�12�, where only two independent fitting parameters appear,
namely, � and k0 �remind that �cl=�kBT /k0, �Q=�� /2�k0M�.
The fit of our quantum SCHA 
Eq. �12�� compared with the
QMC data is shown in Fig. 4 for three representative cases,
where the number of numerical data is larger than the num-
ber of independent fitting parameters to guarantee the signifi-
cance of the fitting procedure. Also shown is the fit with a
purely harmonic model obtained by setting �=0. The ex-
tracted values of � and k0, as well as of the corresponding �Q
and of the anharmonic renormalized phonon frequency �̃0 at
T=0 are reported in Table I, where we also report the critical
temperature Tc for the solid phase bulk instability evaluated
within the SCHA and the experimental melting temperature
Tm

exp.22,28

It is worth commenting on the temperature behavior of
the QMC data compared with the harmonic ��=0� and an-
harmonic SCHA fits. An important point to be underlined
here is that QMC results show a large mean square lattice
displacement at zero temperature together with a rapidly turn
up of �u2� close to the solid bulk instability. As we have
discussed in Sec. III, this is a characteristic trend of highly

quantum solids. On the other hand, this behavior is poorly
reproduced by a purely harmonic model where the amount of
the lattice fluctuations at T=0 is inversely proportional to the
temperature dependence. This is even more true if a Debye
model would be employed since the temperature dependence

TABLE I. Values of k0 and � in SCHA obtained by fitting the
QMC data of Ref. 25 for three representative helium solids, namely,
hcp 4He at molar volume V0=12.12 cm3 /mole, fcc 4He at molar
volume V0=10.98 cm3 /mole, and fcc 3He at molar volume V0

=11.54 cm3 /mole. Also reported are the corresponding values of
�Q, the renormalized phonon frequency �̃0, and the predicted criti-
cal temperature Tc of the solid phase bulk instability compared with
the experimental melting temperature Tm

exp �Ref. 22 and 28�.

hcp 4He fcc 4He fcc 3He

V0

�cm3 /mole�
12.12 10.98 11.54

k0

�meV /Å2�
110�10 140�10 150�10

�
�Å−2�

14�1 15.2�0.8 14.7�0.7

�Q 0.69�0.08 0.66�0.06 0.70�0.06

�̃0

�meV�
4.6�0.1 5.4�0.4 6.1�0.5

Tc

�K�
14�4 20�4 18�4

Tm
exp

�K�
�15 �21 �22

0.10

0.11

0.12

<
u2 >

(A
2 )

0.08

0.09

0.10

<
u2 >

(A
2 )
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QMC [Ref. 20]
Einstein
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FIG. 4. Lattice fluctuations �u2� evaluated within the SCHA
�solid lines� as a function of temperature for different helium solid
conditions compared with quantum Monte Carlo data of Ref. 25.
Values of k0 and � in SCHA obtained by fitting QMC data are
reported in Table I. Also shown is the purely harmonic fitting of the
QMC data with a Einstein and a Debye model.
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of a Debye model is even shallower than in the Einstein case.
The strong quantum degree of solid helium, qualitatively

predicted by these arguments, is confirmed by the numerical
analysis of the SCHA fit which predicts a quantum parameter
�Q in the range �Q�0.66–0.7 for the three samples consid-
ered. Here, the robustness of our fits is confirmed by the nice
agreement between the critical temperature for the bulk in-
stability of the solid phase estimated by the SCHA and the
experimental melting temperature.

These results have important consequences with respect
to the surface and/or grain-boundary melting instability and
local melting induced by quantum isotopic impurities. The
value of �Q�0.69, for the low pressure and/or high molar
volume V0=12.12 cm3 /mole, is safely larger than the value
�Q

SM�0.664 where surface melting occurs at zero tempera-
ture and/or the same order and slightly larger even than
�Q

SM�0.681 where isotopic impurity induced melting also
occurs at zero temperature. Although these estimates are only
indicative of the quantum degree of helium solid, they
clearly point out that quantum anharmonic effects are large
enough in solid helium, for these or larger molar volumes, to
enforce surface melting and local melting close to quantum
impurities down to zero temperature. Quantum Monte Carlo
simulations have actually confirmed premelting at surface
between helium solid and Vycor walls29 and internal inter-
faces of a pure helium system,30 although not all possible

interfaces undergo a solid and/or liquid transition.
These results shed an interesting light also on the recent

report of the nonclassical rotational inertia �NCRI� observed
in 4He.31,32 While it was initially claimed to be an evidence
of a supersolid �SS� phase, subsequent experiments showed a
strong dependence of the NCRI on the annealing process,33

on the presence of grain boundaries,34 on the amount of 3He
concentration,32,35,36 as well as on the freezing procedure.35,36

These observations give rise to an alternative hypothesis to
the SS phase, namely, that a liquid phase is confined at the
grain boundaries and that mass flow is related to superfluid-
ity of the liquid component.37 Our results confirm this sce-
nario and shed interesting perspectives about the role of dis-
order and/or grain boundaries in solid helium. In particular,
we provide a natural explanation for the existence of a liquid
�and thus probably superfluid� phase at the grain boundaries
and we predict a local liquid phase also around 3He impuri-
ties. Local melting close to isotopic 3He impurities should
be, thus, explicitly considered.
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